
LLNL-CONF-491045

Adaptive Particle Filtering for
Mode Tracking: A Shallow Ocean
Application

J. V. Candy

July 20, 2011

OCEANS'11
Kona, HI, United States
September 19, 2011 through September 22, 2011



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
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J. V. Candy, Fellow, IEEE

Abstract—The shallow ocean is an ever changing environment
primarily due to temperature variations in its upper layers (< 100
m) directly affecting sound propagation throughout. The need to
develop processors capable of tracking these changes implies a
stochastic as well as an environmentally adaptive design. The
stochastic requirement follows directly from the multitude of
variations created by uncertain parameters and noise. Some work
has been accomplished in this area, but the stochastic nature was
constrained to Gaussian uncertainties. It has been clear for a long
time that this constraint was not particularly realistic leading
to a Bayesian approach that enables the representation of any
uncertainty distribution. Sequential Bayesian techniques enable
a class of processors capable of performing in an uncertain,
nonstationary (varying statistics), non-Gaussian, variable shallow
ocean environment. A solution to this problem is addressed by
developing a sequential Bayesian processor capable of providing
a joint solution to the modal function tracking (estimation) and
environmental adaptivity problem. The posterior distribution
required is multi-modal (multiple peaks) requiring a sequential
(nonstationary) Bayesian approach. Here the focus is on the
development of a particle filter (PF) capable of providing rea-
sonable performance for this problem. In our previous effort on
this problem nonlinear/non-Gaussian processors were developed
to operate on synthesized data based on the Hudson Canyon
experiment using normal-mode representations. Here we extend
the processors by applying them to the actual hydrophone
measurements obtained from the 23-element vertical array. The
adaptivity problem is attacked by allowing the modal coefficients
to be estimated from the measurement data jointly along with
tracking of the modal functions—the main objective.

Index Terms—model-based processor, sequential Bayesian pro-
cessor, sequential Monte Carlo, particle filter, Hudson Canyon
experiment.

I. INTRODUCTION

The shallow ocean is an uncertain, ever changing, dispersive

environment dominated by ambient and shipping noise as

well as temperature fluctuations that alter sound propagation

throughout. Environmental variations are created by these fluc-

tuations (sound speed variations) as well as other disturbances

caused by ambient, shipping and surface noise and sensor

noise like flow and instrumentation noise. Modeling para-

metric uncertainties can also affect the processing problem.

Thus, a processor is required to “adapt to these environmental

variations while simultaneously tracking modal functions that

are necessary for such applications as localization, inversion

and signal enhancement. A possible solution to this problem is

accomplished by developing a sequential Bayesian processor

capable of providing a joint solution to the modal function

tracking (estimation) and environmental adaptivity problem.

The posterior distribution required is multi-modal (multiple

peaks) requiring a sequential Bayesian approach.

One possible approach to this problem is called model-

based, that is, incorporating a propagation model into a signal

processing scheme has evolved over a long period of time

where it was recognized that by embedding a physics-based

representation can significantly improve the processing [1]-

[5]. In ocean acoustics there are many problems of interest

[6]-[15] governed by propagation models of varying degrees

of sophistication. Thus, we are interested in a shallow water

environment characterized by a normal-mode model.

Model-based signal processing is concerned with the incor-

poration of environmental (propagation, seabed, sound speed,

etc.), measurement (sensor arrays) and noise (ambient, ship-

ping, surface, etc.) models along with measured data into a so-

phisticated processing algorithm capable of detecting, filtering

(estimating) and localizing an acoustic source (target) in the

complex ocean environment as well as adaptively estimating

the model parameters themselves. These techniques are not

constrained to a stationary environment which is essential

in the ever changing ocean. Not only does the model-based

approach offer a means of estimating various quantities of

high interest, but it also provides a methodology to statistically

evaluate its performance on-line [16]. Model-based techniques

have been around for quite a while and have found their way

into ocean acoustics [15].

In this paper, we are primarily interested in investigating

the application of the so-called “next generation” of model-

based signal processing algorithms, primarily the unscented

Kalman filter (UKF) and the particle filter (PF) with the goal

of analyzing their performance on pressure-field data obtained

from the well-known Hudson Canyon experiments performed

on the New Jersey shelf [11], [12]. A PF is a sequential

Markov chain Monte Carlo (MCMC) Bayesian processor

capable of providing reasonable performance for a multi-

modal problem estimating a non-parametric representation of

the posterior distribution [23]. On the other hand, the UKF is a

unimodal processor capable of representing any single peaked

distribution using a statistical linearization technique based on

sigma points that deterministically characterize the posterior

[23].

Model-based processing is a direct approach that uses in-situ

measurements. More specifically, the acoustic measurements

are combined with a set of model parameters usually obtained

from a priori information or a sophisticated normal-mode sim-

ulator [13] that solves the underlying boundary value problem

to extract the initial parameters/states in order to construct the

forward propagator and initialize the algorithm. The algorithm

then uses the incoming data to update the parameter set jointly



with the acoustic signal processing task (enhancement). In

the following, we define a processor whose enhanced states

are the estimated modal functions. Here we investigate the

development of a “model-based signal enhancer” that embeds

a forward propagator into the processing scheme essentially

mimicking previous model-based efforts that used a class of

linearized processors (linearized and extended Kalman filters

(LZKF, EKF) [16], [17], [23]. In order to construct the model-

based processor (BP), we first characterize the normal-mode

model in terms of a state-space representation enabling a

general framework for signal processing.

Background for the state-space representation of our prob-

lem is given in Section II leading to the formulation of the

forward propagators. The design of the BP for a shallow ocean

acoustic problem is discussed in Section III and the results are

given where we compare the performance of the PF and UKF.

We discuss our results in the final section.

II. STATE-SPACE PROPAGATOR

For our ocean acoustic modal function enhancement prob-

lem, we assume a horizontally-stratified ocean of depth h with

a known horizontal source range rs and depth zs and that

the acoustic energy from a point source can be modeled as a

trapped wave governed by the Helmholtz equation [9], [14].

The standard separation of variables technique and removing

the time dependence leads to a set of ordinary differential

equations, that is, we obtain a “depth only” representation of

the wave equation which is an eigenvalue equation in z with

d2

dz2
φm(z) + κ2

z(m)φm(z) = 0, m = 1, · · · , M (1)

whose eigensolutions {φm(z)} are the so called modal func-

tions and κz is the wave number in the z-direction. These

solutions depend on the sound speed profile, c(z), and the

boundary conditions at the surface and bottom as well as the

corresponding dispersion relation given by

κ2 =
ω2

c2(z)
= κ2

r(m) + κ2
z(m), m = 1, . . . , M (2)

where κr(m) is the horizontal wave number associated with

the m-th mode in the r direction and ω is the harmonic source

frequency.

By assuming a known horizontal source range a priori,

we obtain a range solution given by the Hankel function,

H0(κrrs) enabling the pressure-field to be represented by

p(rs, z) =

M
∑

m=1

βm(rs, zs)φm(z) (3)

where p is the acoustic pressure; φm is the mth modal function

with the modal coefficient defined by

βm(rs, zs) := q H0(κrrs) φm(zs) (4)

for q is the source amplitude.

A. State-Space Model

The depth-only eigen-equation can easily be transformed to

state-space form by defining the state vector of the m-th mode

as

φm(z) :=

[

φm(z)
d
dz φm(z)

]

=

[

φm1(z)
φm2(z)

]

(5)

Thus, we have for the m-th mode the following state

(vector) equation as:

d

dz
φm(z) = Am(z)φm(z) (6)

for

Am(z) =

[

0 1
−κ2

z(m) 0

]

(7)

Assuming that the ocean acoustic noise can be charac-

terized by additive uncertainties, we can extend the deter-

ministic state equation for the M -modes, that is, Φ(z) :=
[φ1(z)| · · · |φM(z)]T leading to the following 2M -dimensional

Gauss-Markov representation of the model:

d

dz
φ(z) = A(z)φ(z) + w(z) (8)

where w(z) = [w1 w2 . . . w2M ]T is additive, zero-mean

random noise. The system matrix A(z) is defined as

A(z) =







A1(z) · · · 0
...

. . .
...

0 · · · AM (z)






(9)

and the overall state vector is

φ(z) = [φ11 φ12 | φ21 φ22 | . . . | φM1 φM2]
T (10)

This leads to the measurement equations, which we can

write as

p(rs, z) = C
T (rs, zs)φ(z) + v(z) (11)

where

C
T (rs, zs) = [β1(rs, zs) 0 | · · · | βM (rs, zs) 0] (12)

The random noise terms w(z) and v(z) can be assumed

Gaussian and zero-mean with respective covariance matrices,

Rww and Rvv. The measurement noise (v(z)) can be used

to represent the “lumped” effects of near-field acoustic noise

field, flow noise on the hydrophone and electronic noise. The

modal noise (w(z)) can be used to represent the “lumped”

uncertainty of sound speed errors, distant shipping noise,

errors in the boundary conditions, sea state effects and ocean

inhomogeneities that propagate through the ocean acoustic

system dynamics (normal-mode model). These assumptions,

with known model parameters lead to the optimal solution of

the state estimation problem (Kalman filter) [17].



Since the array spatially samples the pressure-field discretiz-

ing depth, we choose to analogously discretize the differential

state equations using a central difference approach for im-

proved numerical stability, that is, from Eq. 1 we have

d2

dz2
φm ≈ φm(z`) − 2φm(z`−1) + φm(z`−2)

4z2
`

(13)

for 4z` := z` − z`−1. Applying this approximation to Eq. 1

gives

φm(z`)− 2φm(z`−1)+φm(z`−2)+4z2
` κ2

z(m)φm(z`−1) = 0

where z` is the location of the `-th sensor. Defining the discrete

modal state vector as φm(z`) := [φm(z`−2) | φm(z`−1)]
T , we

obtain the following set of difference equations for the m-th

mode

φm1(z`) = φm2(z`−1)

φm2(z`) = −φm1(z`−1) + (2 −4z2
` κ2

z(m))φm2(z`−1)

(14)

with each of the corresponding A-submatrices given by

Am(z) =





0 1

−1 2 −4z2
` κ2

z(m)



 ; m = 1, · · · , M (15)

B. Augmented State-Space Model

The “parametrically adaptive” processor evolves from this

representation by defining a parameter set of interest. Since we

are primarily interested in an environmentally adaptive proces-

sor, that is, a processor capable of adjusting its parameters to

variations in the environment such as temperature, noise, etc.

We choose to capture these changes by allowing the modal

coefficients to vary. Therefore, we define the parameter vector

as

θm(rs, zs) := βm(rs, zs); m = 1, · · · , M
and a new “augmented” state vector as

Φm(z`; θm) := Φm(z`) = [φm1(z`) φm2(z`) | θm(z`)]
T

With this choice of parameters (modal coefficients) the

augmented state equations for the m-th mode become

φm1(z`) = φm2(z`−1) + wm1(z`−1)

φm2(z`) = −φm1(z`−1) + (2 −4z2
` κ2

z(m))φm2(z`−1)

+ wm2(z`−1)

θm(z`) = θm(z`−1) + wθm
(z`−1)

(16)

where we have selected a random walk model (θ̇m(z) =
wθm

(z)) to capture the variations of the modal coeffi-

cients with additive, zero-mean, Gaussian noise of covariance

Rwθmwθm
.

Note that when we augment the unknown parameters into

the state vector to construct our parametrically adaptive pro-

cessor, then we assume that they are random (walks) with

our pre-computed initial values specified (initial conditions

or means) and their corresponding covariances used to bound

their uncertainty (2σ confidence bounds). In fact, if we know

more about how they evolve dynamically or we would like

to constrain their values, we can place “hard” limits directly

into the processor. For instance, suppose we know that the

modes are not evanescent; therefore, we can limit the corre-

sponding wave number coefficient excursions practically to

(θmin, θmax) to avoid these erroneous values by using an

augmented parameter model such as:

θ(z`+1) = θ(z`), θmin < θ(z`) < θmax; (17)

thereby constraining any excursions to remain within this

interval.

Of course, the random walk model certainly can provide

“soft” constraints in the simulation, since the parameter is

modeled as Gauss-Markov implying that 95% of the samples

must lie within confidence limits controlled by (±1.96σm,m).

This constitutes a soft statistical constraint of the param-

eter variations. However, this approach does not guarantee

that the parametrically adaptive processor will remain within

this bound; therefore, hard constraints may offer a better

alternative. For our runs, we use the implied soft statistical

constraint and choose to start the processor with initial pa-

rameter estimates close to those values other researchers have

meticulously estimated from this data set [28,30,31].

More succinctly, we can write

Φm(z`) = Am(z`−1)Φm(z`−1) + wm(z`−1) (18)

for

Am(z`−1) =









0 1 | 0
−1 2 −4z2

`−1κ
2
z(m) | 0

− − −
0 0 | 1









The corresponding measurement model is given by

p(rs, z`) =

M
∑

m=1

θm(z`)φm(z`) + v(z`); ` = 1, · · · , L (19)

with dispersion (sound-speed)

c(z`) =
ω

√

κ2
z(m) + κ2

r(m)
, m = 1, · · · , M ; ` = 1, · · · , L

(20)

This completes the section on the discrete state-space

representation of the shallow ocean acoustic (normal-mode)

propagation model that is embedded as a “forward propagator”

into the subsequent processors for signal enhancement. Note

that the initial model parameters are obtained from the prior

solution of the boundary value problem as shown in Fig. 1.



Fig. 1. Model-based processor design: (a) Boundary Solver for initial
parameters. (b) Propagator, measurement and noise models. (c) BP. (d)
Applications: localization, enhancement (tracking) and inversion.

III. PROCESSORS

In this section we briefly develop the processors for our

problem with details available in [23]. The basic adaptive

problem we pursue in this paper can now be defined in terms

of our mathematical models as:

GIVEN a set of noisy pressure-field and sound speed mea-

surements varying in depth, [{p(rs, z`)}, {c(z`)}] along with

the underlying state-space model of Eqs. 18, 19 and 20

with unknown modal coefficients, FIND the “best” (mini-

mum error variance) estimate of the modal functions, that is,

{φ̂m(z`|z`)}, {θ̂m(z`|z`)}; m = 1, · · · , M and measurements

(enhanced) {p̂(rs, z`)}.

We will primarily focus on the particle filter processor,

since the unscented Kalman filter has been discussed elsewhere

[17],[23] in detail. Note that the UKF is an alternative to the

nonlinear or extended Kalman filter processor applied success-

fully in many of the model-based ocean acoustic applications

[1]-[15]. Like the EKF it is still restricted to a unimodal

distribution (single peak), but that distribution need not be

Gaussian. It also performs a linearization (statistical), but not

of the system dynamical model, but of an inherent nonlinear

vector transformation requiring “sigma points” which deter-

ministically characterize the underlying unimodal distribution.

These points have been pre-calculated for the Gaussian case

[17]. It has been shown that the UKF clearly outperforms the

EKF and its variants (iterated EKF, higher order EKFs, etc.)

and is more accurate and precise besides being much easier

to implement, since Jacobian matrices are no longer required.

Note also that for the EKF/UKF the underlying posterior

distribution has already been decided to be unimodal (multi-

variate Gaussian),that is,

p̂[Φ(z`)|Pz] = (2π)−NΦ/2|RΦΦ(z`|z`)|−1/2 ×
exp

{

− 1

2
(Φ(z`) − Φ̂(z`|z`))

T R−1
ΦΦ(z`|z`) ×

(Φ(z`) − Φ̂(z`|z`))
}

(21)

where Φ̂(z`|z`) is the augmented conditional state vector

(above) at depth z` and RΦΦ(z`|z`) is the conditional state

covariance based on pressure-field measurements up to depth

z`.

A particle filter is a completely different approach to non-

linear filtering in that it removes the restriction of additive

Gaussian noise sources and is clearly capable of characterizing

multimodal distributions. In fact, it might be easier to think of

the PF as a histogram or kernel density like estimator in the

sense that it is an empirical probability mass function (PMF)

that approximates the desired posterior distribution such that

statistical inferences can easily be performed and statistics

extracted directly. Here the idea is a radical change in thinking

where we attempt to develop an empirical estimation of the

posterior distribution following a purely Bayesian approach

using Monte Carlo (MC) sampling theory as its enabling foun-

dation. As one might expect the computational burden of the

PF is much higher that of KF, since it must provide an estimate

of the underlying state posterior distribution component-by-

component at each z`-step along with the fact that the number

of samples to characterize the distribution is equal to the

number of particles.

P̂r[φ(z`)|Pz] =

Np
∑

i=1

Wi(z`)δ
(

φ(z`) − φi(z`)
)

∀z` (22)

Wi(z`) ∝ P̂r[φi(z`)|Pz] is the estimated weights at depth z`;

φi(z`) is the i-th particle at depth z`;

P̂r[·] is the estimated empirical distribution;

Pz is the set of batch pressure-field measurements,

Pz = {p(rs, z1) · · · p(rs, zL)}.

Thus, we see that once the underlying posterior is available,

the estimates of important statistics can be extracted directly.

For instance, the maximum a posteriori (MAP) estimate is

simply found by locating a particular particle φ̂i(z`) corre-

sponding to the maximum of the PMF, that is,

Φ̂MAP
i (z) = maxi P̂r[φi(z`)|Pz] (23)

while the conditional mean or equivalently the minimum

mean-squared error (MMSE) estimate is calculated by inte-

grating the posterior as:

Φ̂MMSE
i (z) =

∫

φi(z)P̂r[φi(z`)|Pz]dz ≈ 1

Np

Np
∑

i=1

Wi(z`)φi(z`)

(24)

There are a variety of PF algorithms available, but perhaps

the simplest is the bootstrap technique [23] which we apply

to our problem. The PF design for our problem using the

bootstrap approach requires the conditional state transition

probability, Pr[Φ(z`)|Φ(z`−1)], and the likelihood (probability)

Pr[p(rs, z`)|Φ(z`)]. Here the state transition is characterized by

the underlying augmented state-space model for each mode of

Eq. 18, that is,



Φm(z`) = Am(z`−1)Φm(z`−1) + wm(z`−1)

or




Φm(z`)
− −−
θm(z`)



 =





Am(z`) | 0
− − −
0 | 1









Φm(z`−1)
−− −

θm(z`−1)





+





Wm(z`−1)
−− −

Wθm
(z`−1)



 (25)

where Wm ∼ N (0, RWmWm
), Wθm

∼ N (0, RWθmWθm
),

φm(0) ∼ N (φm(0), Rφmφm
), θm(0) ∼ N (θm(0), Rθmθm

).
and therefore (under the Gaussian assumption), we have that

Pr[Φ(z`)|Φ(z`−1)] = (2π)−NΦ/2|Pm(z`)|−1/2 ×
exp

{

− 1

2
(Φ(z`) − Am(z`−1)Φm(z`−1))

T
Pm(z`)

−1 ×

(Φ(z`) −Am(z`−1)Φm(z`−1))
}

(26)

with the state covariance given by Pm(z`) =
Am(z`−1)

T Pm(z`−1)Am(z`−1) + RWmWm
.

For the bootstrap implementation, we need only draw noise

samples from the state and parameters distributions and use

the dynamic models above (normal-mode/random walk) in Eq.

18 to generate the set of particles, {Φmi(z`)} for each i =
1, · · · , Np.

The likelihood, on the other hand, is determined from the

nonlinear pressure-field measurement model of Eq. 19, that is,

for each mode we have

pmi(rs, z`) := θmi(z`)φmi
(z`) + v(z`), for ` = 1, · · · , L

(27)

and therefore the scalar likelihood (assuming Gaussian noise)

is

Pr[p(rs, z`)|Φ(z`)] =
1√

2πRvv

×

exp
{

− 1

2Rvv

(

p(rs, z`) −
M
∑

m=1

θmi(z`)φm1(z`; i)

)2
}

(28)

Thus, we estimate the posterior distribution using a sequen-

tial Monte Carlo approach and construct a bootstrap particle

filter [10] using the following steps:

• Initialize: Φm(0), wz`
∼ N (0, Rww), Wi(0) = 1/Np; i =

1, · · · , Np;

• State Transition: Φm(z`) = Am(z`−1)Φm(z`−1) +
wm(z`−1);

• Likelihood Probability: Pr[p(rs, z`)|Φ(z`)] of Eq. 28;

• Weights: Wi(z`) = Wi(z`−1) × Pr[Φm(z`)|Φm(z`−1)];

Fig. 2. Bootstrap particle filter algorithm flow diagram: prediction, update

and resampling with z` the index variable.

• Normalize: Wi(z`) = Wi(z`)
∑

Np

i=1
Wi(z`)

;

• Resample: Φ̃i(z`) ⇒ Φi(z`);

• Posterior: P̂r[Φm(z`)|Pz] =
∑Np

i=1 Wi(z`)δ(φ(z`) −
φi(z`)); and

• MAP Estimate: Φ̂MAP
i (z) = maxi P̂r[φi(z`)|Pz];

• MMSE Estimate: Φ̂MMSE
i (z) = 1

Np

∑Np

i=1 Wi(z`)φi(z`)

A detailed flow diagram of the particle filter (bootstrap)

algorithm is shown in Fig. 2 illustrating the prediction and

update steps along with a resampling algorithm to provide

convergence. Again more details can be found in the refer-

enced textbooks and papers [18]-[23].

So we see that there exists a fundamental philosophical

difference between the UKF (Kalman) processor and the PF

processor. Their implementations are completely different as

well: one based on approximating the required distribution

through statistical linearization and one through an empirical

PMF estimator.

IV. MODEL-BASED OCEAN ACOUSTIC

PROCESSING

In this section we discuss the development of the propa-

gators for the Hudson Canyon experiment performed in 1988

in the Atlantic with the primary goal of investigating acoustic

propagation (transmission and attenuation) using continuous

wave data [11], [12]. The Hudson Canyon is located off

the coast of New Jersey in the area of the Atlantic Margin



Fig. 3. Hudson Canyon experiment geometry and structure: (a) Source at

36m depth and 0.5 Km range, 50 Hz. (b) 23-element vertical hydrophone
array. (c) 5 modes support the water column.

Coring project borehole 6010 . The seismic and coring data

are combined with sediment properties measured at that site.

Excellent agreement was determined between the model and

data indicating a well-known, well-documented shallow water

experiment with bottom interaction and yielding ideal data sets

for investigating the applicability of a BP to measured ocean

acoustic data [11], [12]. The experiment was performed at low

frequencies (50-600Hz) in shallow water of 73m depth during

a period of calm sea state as shown in Fig. 3. A calibrated

acoustic source was towed at roughly 36m depth along the

73m isobath radially to distances of 4 to 26Km. The ship speed

was between 2 and 4Kts. The fixed vertical hydrophone array

consisted of 24 phones spaced 2.5m apart extending from the

seafloor up to a depth of about 14m below the surface. CTD

and SSP measurements were made at regular intervals and

the data were collected under carefully controlled conditions

in the ocean environment. The normalized horizontal wave

number spectrum for a 50Hz temporal frequency is dominated

by 5 modes occurring at wave numbers between 0.14 to 0.21

m−1 with relative amplitudes increasing with increased wave

number. A SNAP [13] simulation was performed and the

results agree quite closely, indicating a well-understood ocean

environment.

In order to construct the state-space propagator, we require

the set of parameters which were obtained from the experimen-

tal measurements and processing (wave number spectra). The

horizontal wave number spectra were estimated using synthetic

aperture processing [11]. Eight temporal frequencies were

employed: four on the inbounds (75Hz, 275Hz, 575Hz, 600Hz)

and four on the outbound (50Hz, 175Hz, 375Hz, 425Hz). In

this application we will confine our investigation to the 50Hz

case, which is well-documented, and to horizontal ranges from

0.5-4Km. The raw measured data was processed (sampled,

corrected, filtered, etc.) and supplied for this investigation.

A. Adaptive PF Design

The design and development of the environmentally adap-

tive PF proceeds through the following steps: (1) pre-

processing the raw experimental data; (2) solving the boundary

value problem (BVP) [9] to obtain initial parameter sets for

each temporal frequency (e.g. wavenumbers, modal coeffi-
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Fig. 4. PF design/development procedure: (a) Initial parameters/conditions.

(b) Design runs. (c) Ensemble runs.

cients, initial conditions, etc.); (3) state-space forward propa-

gator simulation of synthetic data for PF analysis/design; (4)

application to measured data; and (5)PF performance analysis

as shown in Fig. 4.

Pre-processing of the measured pressure-field data follows

the usual pattern of filtering, outlier removal and Fourier trans-

forming to obtain the complex pressure-field as a function of

depth along the array. This data along with experimental condi-

tions (frequencies, sound-speed profiles (CTD measurements),

boundary conditions, horizontal wavenumber estimators (see

[12] for details) provide the input to the normal mode BVP

solutions (SNAP [6], KRACKEN [7], etc.) yielding the output

parameters. These parameters are then used as input to the

state-space forward propagator (see Fig. 4) developed in Sec.

II.

The state-space propagator is then used to develop a set

of synthetic pressure-field data with higher resolution than the

original raw data (e.g. 46-element array rather than 23-element

at half-wave inter-element spacing). This set represents the

“truth” data that can be investigated when “tuning” the PF

(e.g. number of particles, covariances, etc.). Once tuned, the

processors are applied directly to the measured pressure-field

data (23-elements) after re-adjusting some of the processor

parameters (covariances). Here the performance metrics are

estimated and processor performance analyzed. Since each run

of the PF is a random realization, that is, the process noise

inputs are random, an ensemble of results are estimated with

ensemble statistics presented. In this way, we can achieve

a detailed analysis of the processor performance prior to

fielding and operational version. In this paper we constrain

our discussion results to processing the noisy experimental

pressure-field measurements [12] as compared to a previous

paper [24] that concentrated on the synthetic data set generated

from the forward propagator.



B. Results

First we investigate the enhancement capabilities of the PF

in estimating the pressure-field over a 100-member ensemble

shown in Fig. 5. Here we see the raw data (dotted blue

line) as well as both maximum a-posteriori (MAP) estimates

(solid red line) and conditional mean (CM) estimates (dotted

magenta line with circles). Both estimators appear to track

the field quite well until some erratic measurements near the

bottom of the channel. The predictions appear more reasonable

than the noisy data. The corresponding innovations (residual)

sequence is also shown. Classically, both estimators produced

satisfactory zero-mean/statistical whiteness tests (Z-M/W-T:

6.2 × 10−4 < 4.9 × 10−1/6.3% as well as the WSSR tests

indicating a “tuned” processor [17]. The UKF processor also

produced reasonable results for the enhanced pressure-field.

Ensemble mode tracking results are shown in Figs. 6 and 7

for each of the modal function estimators, the PF (MAP/CM)

and the UKF. In Fig. 6 we observe that the performance

of the PF (MAP/CM) appears to track the modes quite well

especially compared to the UKF. The PF estimators perform

equivalently. Two of the modal function estimates (first two)

exhibit the largest errors as shown in Fig. 7 while the final

three functional estimates are much better. It is interesting

to note that the modal coefficient estimates are constantly

being adapted (adjusted) by the processor throughout the runs

attesting to the nonstationary nature of the ocean statistics as

illustrated in Fig. 8.

We also illustrate the multimodal aspect of the oceanic data

by observing the modal function posterior PDF estimates for

modes 1 and 5 as illustrated in Fig. 9. It is clear from the

plots that for each depth multiple peaks appear in the posterior

estimates. The pressure-field posterior is better behaved almost

producing a near unimodal posterior for the predicted field.

Visualizing a peak at each depth produces a “smooth” estimate

(MAP) as shown in Fig. 10. This completes the analysis of

the Hudson Canyon experimental data and the PF processing

performance.

V. SUMMARY

In this paper we have developed on-line model-based

solutions to the ocean acoustic signal processing problem

based on the normal-mode propagation model and a vertical

sensor array measurement system. We have demonstrated

that a parametrically adaptive particle filter is able to track

the modal functions while jointly adjusting environmental

parameters (modal coefficients) in a variable shallow ocean.

The algorithms employed were the unscented Kalman filter

and the particle filter both modern approaches applied to this

problem. We compared their performances and found better

performance of the PF over a 100-member ensemble. Next

we plan to investigate the adaptivity to the wave number

parameters—a more sensitive set to environmental changes.

Much more effort must be applied to gain a full understanding

of applying these approaches to usual ocean acoustic problems

(localization, tracking, inversion, etc.). Our future efforts will

be focused on extending the processors to those problems.

Fig. 5. Raw/enhanced pressure-field (blue dots) data from the Hudson

Canyon experiment using particle filter estimators: MAP (red), conditional
mean (CM) in magenta and the UKF (turquoise) with corresponding innova-
tions (residuals) sequence (green).

Fig. 6. Modal function tracking (estimation): Raw experimental data (blue
plus), UKF (turquoise dots), MAP (red circles) and CM (magenta squares)

particle filters.

Fig. 7. Modal function tracking errors: Raw experimental data (blue plus)

and MAP (red circles) particle filters errors.
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Fig. 8. Adaptive modal coefficient parameter estimation data from the

Hudson Canyon experiment using the MAP (red) particle filter.
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